The Id3/E47 axis mediates cell-cycle control in human pancreatic ducts and adenocarcinoma.
نویسندگان
چکیده
Pancreatic ductal adenocarcinoma (PDA) has a 5-year survival rate of less than 5%, and therapeutic advances have been hampered by gaps in our understanding of cell-cycle control in the adult pancreas. Previously, we reported that basic Helix-Loop-Helix (bHLH) transcription factors regulate cell fate specification in the pancreas. In the present study, we found that a repressor of bHLH activity, Id3, was profoundly upregulated in ductal cells in murine models of pancreatitis and pancreatic intraepithelial neoplasia (PanIN). Id3 was also pervasively expressed in neoplastic lesions in human PDA in situ. We hypothesized that an imbalance in bHLH versus Id activity controlled cell growth in PDA. Consistent with this model, cell-cycle progression in PDA cells was impeded by siRNA-mediated depletion of Id3 or overexpression of the bHLH protein E47. The precursors of human PDA are normally quiescent duct cells which do not proliferate in response to high serum or growth factors. The finding that Id3 was expressed in pancreatitis, as well as PDA, suggested that Id3 might induce cell-cycle entry in ducts. To test this hypothesis, primary human pancreatic duct cells were transduced with an adenovirus-expressing Id3. Remarkably, Id3 expression alone was sufficient to trigger efficient cell-cycle entry, as manifested by expression of the proliferation markers Ki67, phospho-cyclin E, and phospho-histone H3. Collectively, the data establish dysregulation of the Id/bHLH axis as an early and sustained feature of ductal pathogenesis and mark this axis as a potential therapeutic target for intervention in pancreatitis and PDA.
منابع مشابه
Signaling and Regulation The Id3/E47 Axis Mediates Cell-Cycle Control in Human Pancreatic Ducts and Adenocarcinoma
Pancreatic ductal adenocarcinoma (PDA) has a 5-year survival rate of less than 5%, and therapeutic advances have been hampered by gaps in our understanding of cell-cycle control in the adult pancreas. Previously, we reported that basic Helix-Loop-Helix (bHLH) transcription factors regulate cell fate specification in the pancreas. In the present study, we found that a repressor of bHLH activity,...
متن کاملThe Basic Helix-Loop-Helix Transcription Factor E47 Reprograms Human Pancreatic Cancer Cells to a Quiescent Acinar State With Reduced Tumorigenic Potential
OBJECTIVES Pancreatic ductal adenocarcinoma (PDA) initiates from quiescent acinar cells that attain a Kras mutation, lose signaling from basic helix-loop-helix (bHLH) transcription factors, undergo acinar-ductal metaplasia, and rapidly acquire increased growth potential. We queried whether PDA cells can be reprogrammed to revert to their original quiescent acinar cell state by shifting key tran...
متن کاملId3 Maintains Foxp3 Expression in Regulatory T Cells by Controlling a Transcriptional Network of E47, Spi-B, and SOCS3.
The transcription factor Foxp3 dominantly controls regulatory T (Treg) cell function, and only its continuous expression guarantees the maintenance of full Treg cell-suppressive capacity. However, transcriptional regulators maintaining Foxp3 transcription are incompletely described. Here, we report that high E47 transcription factor activity in Treg cells resulted in unstable Foxp3 expression. ...
متن کاملExpression of Id helix-loop-helix proteins in colorectal adenocarcinoma correlates with p53 expression and mitotic index.
Id helix-loop-helix (HLH) proteins function as regulators of cell growth and differentiation and when overexpressed can induce malignant transformation. In a series of 34 cases of primary human colorectal adenocarcinoma, immunoreactivity for Id1, Id2, and Id3 was found to be significantly elevated in tumor compared with normal mucosa (P = 0.001 for Id1 and Id2; P = 0.002 for Id3). No elevation ...
متن کاملFicus auriculata (fig) Extracts Induced Cell Cycle Profile Changes and Apoptosis Through Caspase-Independent Pathway in Human Lung Adenocarcinoma Cell Line, A549
Background: Ficus auriculata (fig) has immense value of benefits with regards to their medicinal and therapeutic properties. It has been long used in traditional folk medicine, and one of the fruits mentioned in Al-Quran. Many scientific researches have proven the usage of this natural medicine in in vitro and in vivo studies, where anti-cancer is among of its recognized properties. Objective...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer research : MCR
دوره 9 6 شماره
صفحات -
تاریخ انتشار 2011